Catalytic and Highly Enantioselective Friedel−**Crafts Alkylation of Aromatic Ethers with Trifluoropyruvate under Solvent-Free Conditions**

Jun-Ling Zhao, Li Liu,* Yong Sui, Yu-Liang Liu, Dong Wang,* and Yong-Jun Chen*

Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China

yjchen@iccas.ac.cn; dwang210@iccas.ac.cn

Received October 23, 2006

ABSTRACT

Highly enantioselective Friedel−**Crafts alkylation of simple and aromatic ethers (4a**−**l) with 3,3,3-trifluoropyruvate (3) was accomplished by using chiral (4R,5S)-DiPh-BOX(1b)**−**Cu(OTf)2 complex (1 mol %) as a catalyst under solvent-free conditions. Excellent yields and enantioselectivities (90**−**93% ee, after recrystallization up to 99% ee) of the Friedel**−**Crafts alkylation products were obtained.**

Friedel-Crafts reaction of aromatic and heteroaromatic compounds with carbonyl compounds is one of the fundamental reactions for forming carbon-carbon bonds.¹ Recently, there has been considerable interest in developing asymmetric Friedel-Crafts reactions by using various chiral catalysts. Such reactions provide an efficient method to prepare optically active aromatic compounds possessing biological and pharmaceutical activities.² Representative examples include the chiral aluminum complexes, 3 titanium complexes, 4 zirconium complexes, 5 and chiral bisoxazoline (BOX)-metal complexes.6 Jørgensen reported enantioselective Friedel-Crafts alkylation of electron-rich aromatic and heteroaromatic compounds such as aniline and indole derivatives with glyoxylate⁷ or trifluoropyruvate⁸ catalyzed by chiral BOX-metal complexes. Corma 9 reported the use of chiral silica-anchored catalysts in asymmetric reaction of aromatic compounds with trifluoropyruvate. Török and coworkers¹⁰ successfully used organocatalysts for the enantioselective reaction of indoles with trifluoropyruvate. However, there are very few studies on the catalytic enantioselective Friedel-Crafts alkylation of the less reactive aromatic ethers with carbonyl compounds, except for the more activated dimethoxybenzene.^{8b,9} On the other hand, there has been great progress in studying organic reactions under solvent-free

Vol. 8, No. 26 ⁶¹²⁷-**⁶¹³⁰**

⁽¹⁾ Olah, G. A.; Khrisnamurti, R.; Surya Prakashi, G. K. In *Comprehansive Organic Synthesis*; Trost, B. M., Ed.; Pergamon: New York, 1991; Vol. 3, pp 293-339.

⁽²⁾ For review on catalytic asymmetric Friedel-Crafts alkylation, see: Bandini, M.; Melloni, A.; Umani-Ronchi, A. *Angew. Chem., Int. Ed.* **2004**, *43*, 550.

⁽³⁾ Bigi, F.; Casiraghi, G.; Casnati, G.; Sartori, G. *J. Org. Chem.* **1985**, *50*, 5018.

^{(4) (}a) Ishii, A.; Soloshonok, V. A.; Mikami, K. *J. Org. Chem.* **2000**, *65*, 1597. (b) Yuan, Y.; Wang, X.; Li, X.; Ding, K. *J. Org. Chem.* **2004**, *69*, 146.

⁽⁵⁾ Erker, G.; van der Zeijden, A. A. H. *Angew. Chem., Int. Ed.* **1990**, *29*, 512.

⁽⁶⁾ For a recent excellent review on chiral bis(oxazoline) ligands in asymmetric catalysis, see: Desimoni, G.; Faita, G.; Jørgensen, K. A. *Chem. Re*V*.* **²⁰⁰⁶**, *¹⁰⁶*, 3561.

⁽⁷⁾ Gathergood, N.; Zhuang, W.; Jørgensen, K. A. *J. Am. Chem. Soc.* **2000**, *122*, 12517.

^{(8) (}a) Zhuang, W.; Gathergood, N.; Hazell, R. G.; Jørgensen, K. A. *J. Org. Chem.* **2001**, *66*, 1009. (b) Jørgensen, K. A. *Synthesis* **2003**, 1117.

⁽⁹⁾ Corma, A.; Garcia, H.; Moussaif, A.; Sabater, M. J.; Znibe, R.; Redouane, A. *Chem. Commun*. **2002**, 1058.

⁽¹⁰⁾ Török, B.; Abid, M.; London, G.; Esquibel, J.; Török, M.; Mhadgut, S. C.; Yan, P.; Surya Prakash, G. K. *Angew. Chem., Int. Ed.* **2005**, *44*, 3086.

conditions.11 However, only a limited number of enantioselective solvent-free catalytic reactions have been reported.¹² Recently, we reported a highly efficient reaction of indoles with trifluoropyruvate under solvent- and catalyst-free conditions.13 As part of our continuous interest in enantioselective solvent-free reactions for generating optically active CF_3 containing compounds for biological applications,¹⁴ herein we report a highly enantioselective Friedel-Crafts alkylation of simple and aromatic ethers with trifluoropyruvate catalyzed by (4*R*,5*S*)-DiPh-BOX-Cu(OTf)₂ under solvent-free conditions.

To begin our study, we chose the six chiral BOX-ligands shown in Figure 1. Although the reaction of 3-methoxyani-

Figure 1. Chiral BOX ligands and compounds **2** and **5**.

sole **2** with ethyl 3,3,3-trifluoropyruvate **3** in the presence of chiral catalyst (4*S*)-*t*-Bu-BOX-Cu(OTf)2 [(4*S*)-**1f**, 10 mol %] in ether gave the product 5 in 56% yield with 86% ee,^{8a} unfortunately, a simple and less activated aromatic ether, anisole **4a**, did not react with **3** at all under the reported conditions (Scheme 1). We speculated that the employment of solvent-free conditions would overcome the low reactivity

(13) Zhao, J.-L.; Liu, L.; Zhang, H. B.; Wu, Y.-Ch.; Wang, D.; Chen, Y. J. *Tetrahedron Lett.* **2006**, *47*, 2511.

(14) (a) Nelson, D. W.; Owens, J.; Hiraldo, D. *J. Org. Chem.* **2001**, *66*, 2572. (b) Surya Prakash, G. K.; Manadal, M.; Olah, G. A. *Angew. Chem., Int. Ed.* **2001**, *40*, 589. (c) Bravo, P.; Crucianelli, M.; Vergani, B.; Zanda, M. *Tetrahedron Lett.* **1998**, *39*, 7771. (d) Xu, Y.; Dolbier, W. R., Jr. *Tetrahedron Lett.* **1998**, *39*, 9151.

of aromatic ethers. Furthermore, the acceleration of the reaction under solvent-free conditions may, at the same time, also be accompanied by high enantioselectivity of the reaction. Thus, **4a** was reacted with **3** under solvent-free conditions together with various chiral catalysts (Scheme 1). The results are summarized in Table 1. To our delight, $Cu(OTf)₂$

Table 1. Screening Ligands and MXn by Reaction of **3** with **4a***^a*

entry	I^*b	$\mathbf{MX}_{n}{}^{b}$	time(h)	vield ^c $(\%)$	ee $d(\%)$
1	1b	Cu(OTf) ₂	10	90	88
$\overline{2}$	1b	Cu(OTf) ₂ e	20	85	86
3	1b	Cu(OTf)	20	70	85
4	1b	Cu(CIO ₄) ₂	18	95	81
5	1b	Cu(OAc) ₂	24	$_{\rm trace}$	
6	1b	CuCl ₂	24	$_{\rm trace}$	
7	1b	Cu OTf	24	$_{\rm trace}$	
8	1b	$Zn(OTf)_{2}$	24	45	81
9	1b	$Mg(OTf)_2$	24	$_{\rm trace}$	
10	1b	$Sc(OTf)_{3}$	24	$_{\rm trace}$	
11	1b	$_{\rm FeCl_3}$	24	${<}5$	
12	1a	$Cu(OTf)_2$	15	80	80
13	1c	$Cu(OTf)_{2}$	20	78	22
14	1d	$Cu(OTf)_{2}$	17	85	79
15	1e	Cu(OT) ₂	24	$_{\rm trace}$	
16	1f	$Cu(OTf)_{2}$	24	trace	
17		Cu(OTf) ₂	24	7	

a Under solvent-free conditions at room temperature. *b* L*/MX_{*n*} = 1:1.2, catalyst loading: 1 mol %. *^c* Isolated yield. *^d* Determined by chiral HPLC. *^e* cat.: 0.1 mol %. *^f* cat.: 0.01 mol %.

and Cu(ClO4)2 provided both excellent catalytic abilities and high enantioselectivities (entries 1 and 4). Among the chiral ligands examined, [(4*R*,5*S*)-**1b**] gave the most promising results with 90% yield and 88% ee (Table 1, entry 1).

The reaction requires only 1 mol % of catalyst to achieve 90% yield and 88% ee. The amount of catalysts can be further reduced to 0.1 mol % to give nearly the same yield (85%) and enantiomeric excess (86%) of **6a** with a prolonged reaction time (Table 1, entry 2). *Remarkably, even when the catalyst loading was further reduced to 0.01 mol %, the reaction still ga*V*^e 6a in 70% yield with 85% ee* (Table 1, entry 3). In contrast, if $Cu(OTf)₂$ (1 mol %) alone was used as the catalyst, the reaction of **4a** with **3** gave only 7% yield of **6a** after 24 h (Table 1, entry 17).

⁽¹¹⁾ For a review on recent advances in solventless organic reactions, see: Cave, G. W. V.; Raston, C. L.; Scott, J. L. *Chem. Commun.* **2001**, 2159.

⁽¹²⁾ For examples of highly enantioselective solvent-free reactions, see: (a) Kinetic resolution of racemic epoxide: Tokunaga, M.; Larrow, J. F.; Kakuichi, F.; Jacobsen, E. N. *Science* **¹⁹⁹⁷**, *²⁷⁷*, 936. (b) Hetero-Diels-Alder reaction: Long, J.; Hu, J. Y.; Shen, X. Q.; Ji, B. M.; Ding, K. *J. Am. Chem. Soc.* **2002**, *124*, 10. (c) Carbonyl ene reaction: Yuan, Y.; Zhang, X.; Ding, K. *Angew. Chem., Int. Ed.* **2003**, *42*, 5478. (d) Alkyl addition to ketones: Jeon, S.-J.; Li, H.; Walsh, P. J. *J. Am. Chem. Soc.* **2005**, *127*, 16416. (e) Aminoalkylation: Cimarelli, C.; Mazzanti, A.; Palmieri, G.; Volpini, E. *J. Org. Chem.* **2001**, *66*, 4759. (f) Olefin hydroformylation: Shibahara, F.; Nozaki, K.; Hiyama, T. *J. Am. Chem. Soc.* **2003**, *125*, 8555. (g) RCM reaction: Dolman, S. J.; Samely, E. S.; Hoveyda, A. H.; Schrock, R. R. *J. Am. Chem. Soc.* **2002**, *124*, 6991.

To study the effect of solvent, the reaction of **4a** with **3** was carried out in various polar and nonpolar organic solvents. The experimental results (Table 2) indicated that

	Table 2. Solvent Effect on the Reaction of 4a with 3^a					
entry	solvent	time(h)	yield ^b $(\%)$	ee^c (%)		
1	none	10	90	88		
2	$CH_2Cl_2^d$	10	90	88		
3	CH_2Cl_2	24	18	89		
4	ether	24	21	83		
5	toluene	24	12	85		
6	THF ^d	24	$_{\rm NR}$			
7	i -PrOH ^d	24	NR			

a Catalyst: $(4R,5S)$ -**1b**/Cu(OTf)₂ (1:1.2, 1 mol %). *b* Isolated yield. *c* Determined by chiral HPLC. *d* High concentration: 90 *µ*L of solvent/0.44 mmol of substrate.

the solvent-free condition provided both high yield and high enantioselectivity (entry 1). When ether, toluene, or CH_2Cl_2 was used as a solvent, although no major change in enanatioselectivity occurred, a very low yield of the corresponding product was obtained $(12-21%)$ (entries $3-5)$. No reaction was observed at all with THF or 2-propanol as solvent (entries 6 and 7). It is interesting to note that in $CH₂$ - $Cl₂$ under a high concentration, the yield and enantioselectivity were similar to the solvent-free conditions (compare entries 1 and 2). Thus, for solid substrates, a small amount of CH_2Cl_2 can dramatically improve the yield while maintaining the same high enantioselectivity.

The reaction temperature also affected the enantioselectivities. At 20 °C, the reaction between **4a** with **3** gave the product **6a** with 88% ee, while the enantioselectivity was increased to 90% at 0 \degree C and up to 92% at $-20 \degree$ C, with a prolonged reaction time (24 h) and decreased yield (75%) (Table 3, entries 2–4). Higher reaction temperature (83 $^{\circ}$ C)

^a Catalyst: (4*R*,5*S*)-**1b**/Cu(OTf)2 (1:1.2, 1 mol %). *^b* Isolated yield. *^c* Determined by chiral HPLC.

lowered the ee value down to 81% (Table 3, entry 1). *It should be noted that the reaction is exothermic and must be handled carefully on large scale*. A gram scale reaction of **4a** with **³** was carried out in the presence of **1b**-Cu(II) complex (1 mol %) at 0 °C under solvent-free conditions smoothly, giving the product **6a** with high enantioselectivity (90% ee) and good yield (70%).

Subsequently, various aromatic ethers (**4a**-**l**) were reacted with **³** in the presence of chiral catalyst (4*R*,5*S*)-**1b**-Cu-

(OTf)2 (1 mol %) under solvent-free conditions (Scheme 2). Moderate to high yields (55-98%) and high enantioselec-

tivities (90-93% ee, after recrystallization up to 99% ee) were obtained in each case (Table 4). The ¹H NMR spectra of the products show that the solvent-free Friedel-Crafts alkylation reactions have excellent para regioselectivity.

The absolute configuration of **6g** was assigned as (*S*) on the basis of the X-ray crystal structural analysis. The stereochemistry outcome can be explained by Figure 2. In general, a four-coordinated Cu(II) complex prefers a square planar geometry. However, when trifluoropyruvate coordinates with the complex of (4*R*,5*S*)-DiPh-BOX-Cu(II), a tetrahedral transition structure is formed, driven by the $\pi-\pi$ stacking interaction of a phenyl group with the ketone carbonyl group of trifluoropyruvate,¹⁵ leading to Re face attack of the aromatic ether. Another phenyl group and the methyl groups on the bridge may also play a role in the stereochemical control.

In conclusion, a catalytic and highly enantioselective Friedel-Crafts alkylation of simple aromatic ethers with

Figure 2. Proposed model for the asymmetric Friedel-Crafts alkylation.

trifluoropyruvate was achieved under solvent-free conditions. The method provides a practical synthetic approach to optically active CF_3 -containing α -hydroxyl- α -arylcarboxylate compounds.

Acknowledgment. We thank the National Natural Science Foundation of China and the Chinese Academy of Sciences for financial support.

Supporting Information Available: Experimental procedures, characterization data of the products, chiral HPLC separations for ee determination, and X-ray structural data of **6g**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0626037

⁽¹⁵⁾ Pandey, M. K.; Bisai, A.; Singh, V. K. *Tetrahedron Lett.* **2006**, *47*, 897.